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Abstract. We investigate the use of the hard thermal loop (HTL) resummation technique in non-
equilibrium field theory. We use the Keldysh representation of the real time formalism (RTF). We derive
the HTL photon self energy and the resummed photon propagator. We show that no pinch singularities
appear in the non-equilibrium HTL effective propagator. We discuss a possible regularization mechanism
for these singularities at higher orders. As an example of the application of the HTL resummation method
within the RTF we discuss the damping rate of a hard electron.

1 Introduction

Perturbation theory for gauge theories at finite tempera-
ture suffers from infrared singularities and gauge depen-
dent results for physical quantities. These problems are
avoided by using an effective perturbation theory
(Braaten-Pisarski method [1]) which is based on the re-
summation of hard thermal loop (HTL) diagrams into
effective Green functions. This powerful method was de-
rived within the imaginary time formalism (ITF). Using
resummed Green functions, medium effects of the heat
bath, such as Debye screening, collective plasma modes,
and Landau damping, are taken into account. The HTL
resummation technique has been applied to a number of
interesting problems, in particular to the prediction of sig-
natures and properties of a quark-gluon plasma (QGP) ex-
pected to be produced in relativistic heavy ion collisions
(for a review see [2]).

However, the use of thermal field theories for describ-
ing a QGP in nucleus-nucleus collisions is restricted by
the fact that at least the early stage of such a collision
leads to a fireball, which is not in equilibrium. It is not
clear if a complete thermal and chemical equilibrium will
be achieved later on. Hence, non-equilibrium effects in a
parton gas should be considered for predicting signatures
of QGP formation and for obtaining a consistent picture
of the fireball. This can be done in the case of a chemi-
cally non-equilibrated parton gas by means of rate equa-
tions [3] or more generally by using transport models [4].
However, these approaches are based on a semiclassical
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approximation. In particular, infrared divergences have to
be removed phenomenologically. Therefore it is desirable
to derive a Green function approach including medium
effects as in the case of the HTL resummation. For this
purpose one has to abandon the ITF, which is restricted
to equilibrium situations. The real time formalism (RTF),
on the other hand, can be extended to investigate non-
equilibrium systems [5,6].

The RTF involves choosing a contour in the complex
energy plane which fulfills the Kubo-Martin-Schwinger
boundary condition and contains the real axis [5]. This
leads to propagators and self energies which are given by
2×2 matrices. The choice of the contour is not unique. We
will adopt the Keldysh or closed time path contour, which
was invented for the non-equilibrium case [5]. In partic-
ular, we will demonstrate the usefulness of the Keldysh
representation [7] based on advanced and retarded propa-
gators and self energies and show how potentially danger-
ous terms (pinch singularities) [8] in non-equilibrium are
treated easily within this representation.

In the next section we review the Keldysh representa-
tion. In Sect. 3, we discuss the equilibrium calculation. We
consider QED and give the results of the real time calcula-
tion, in the HTL approximation, of the photon self energy,
the resummed photon propagator, and the electron damp-
ing rate. The results are, of course, identical to those of the
ITF, which demonstrates that although the HTL resum-
mation scheme was derived within the ITF, the result is
independent of the choice of contour. In Sect. 4, we extend
the HTL resummation technique to off-equilibrium situa-
tions by following the equilibrium calculations outlined in
Sect. 3. We show that no pinch singularities appear in the
non-equilibrium HTL effective propagator.
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2 Keldysh representation

In this section we review the Keldysh representation of
the RTF. The bare propagator for bosons reads [6]

D(K) =
( 1

K2−m2+iε 0
0 −1

K2−m2−iε

)
− 2πi δ(K2 − m2)

×
(

nB(k0) θ(−k0) + nB(k0)
θ(k0) + nB(k0) nB(k0)

)
, (1)

where K = (k0,k), k = |k|, θ denotes the step func-
tion, and the distribution function is given by nB(k0) =
1/[exp(|k0|/T ) − 1] in the equilibrium case.

For fermions the bare propagator can be written as

S(K) = (K/ + m)
[( 1

K2−m2+iε 0
0 −1

K2−m2−iε

)

+2πi δ(K2 − m2)

×
(

nF (k0) −θ(−k0) + nF (k0)
−θ(k0) + nF (k0) nF (k0)

)]
, (2)

where the Fermi distribution is given by nF (k0) = 1/[exp
(|k0|/T )+1] in equilibrium. The components of these prop-
agators are not independent, but fulfill the relation

G11 − G12 − G21 + G22 = 0, (3)

where G stands for D or S.
By an orthogonal transformation of these 2 × 2 ma-

trices we arrive at a representation of the propagators in
terms of advanced and retarded propagators which was
first introduced by Keldysh [7]. The three independent
components of this representation are defined as [6]

GR = G11 − G12,

GA = G11 − G21,

GF = G11 + G22. (4)

The inverted relations read

G11 =
1
2

(GF + GA + GR),

G12 =
1
2

(GF + GA − GR),

G21 =
1
2

(GF − GA + GR),

G22 =
1
2

(GF − GA − GR). (5)

Similar relations to (3) and (4) hold for the self energies
[9]:

Π11 + Π12 + Π21 + Π22 = 0 (6)

and

ΠR = Π11 + Π12,

ΠA = Π11 + Π21,

ΠF = Π11 + Π22, (7)

where Π stands for the self energy of a boson or fermion.

Using (1) and (2) in (4) the bare propagators of the
Keldysh representation are given by

DR(K) =
1

K2 − m2 + i sgn(k0)ε
,

DA(K) =
1

K2 − m2 − i sgn(k0)ε
,

DF (K) = −2πi [1 + 2nB(k0)] δ(K2 − m2) (8)

for bosons and

SR(K) =
K/ + m

K2 − m2 + i sgn(k0)ε
,

SA(K) =
K/ + m

K2 − m2 − i sgn(k0)ε
,

SF (K) = −2πi (K/ + m) [1 − 2nF (k0)] δ(K2 − m2) (9)

for fermions. The bare propagators DF and SF can be
written also as

DF (K) = [1 + 2nB(k0)] sgn(k0) [DR(K) − DA(K)],
SF (K) = [1 − 2nF (k0)] sgn(k0) [SR(K) − SA(K)]. (10)

In the non-equilibrium case, all of these equations are
valid, with the equilibrium distribution functions (nB , nF )
replaced by non-equilibrium distribution functions (fB ,
fF ) which depend on the four momentum and the space-
time coordinate [6].

Now we consider the situation for full (resummed)
propagators. In equilibrium, (10) is valid for full propa-
gators as a consequence of the dissipation-fluctuation the-
orem [9]. The polarization tensor satisfies,

ΠF (K) = [1 + 2nB(k0)] sgn(k0) [ΠR(K) − ΠA(K)] (11)

for bosons, and for fermions we have to replace nB by
−nF . Out of equilibrium however, the situation is more
complicated. Equations (10) and (11) are not satisfied
by resummed propagators out of equilibrium. Additional
terms occur which appear to give rise to pinch singulari-
ties. In Sect. 4 we will discuss these terms in detail.

3 Equilibrium

In this section we consider the hot QED plasma in equilib-
rium. We discuss the HTL resummation technique in the
context of the Keldysh representation of the RTF, as a
starting point for our study of non-equilibrium situations.

3.1 HTL photon self energy

The first step of the Braaten-Pisarski method is to ex-
tract the HTL diagrams which have to be resummed into
effective Green functions. A typical example is the HTL
photon self energy. It is given by the diagram of Fig. 1,
where the momenta of the internal electron lines are of
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K

K-P

P

Fig. 1. HTL photon self energy

the order of the temperature or larger. Applying standard
Feynman rules one finds

Πµν(P ) = −ie2
∫

d4K

(2π)4
tr [γµS(Q)γνS(K)] , (12)

where S denotes the electron propagator and Q = K −P .
The retarded self energy is defined in (7),

Πµν
R (P ) = Πµν

11 (P ) + Πµν
12 (P )

= −ie2
∫

d4K

(2π)4
{tr [γµS11(Q)γνS11(K)]

−tr [γµS21(Q)γνS12(K)]} , (13)

where the minus sign in front of the second term comes
from the vertex of the type 2 fields [5]. In the following we
will neglect the electron mass assuming m � T and write
the electron propagator as Sij(K) ≡ K/ ∆̃ij(K). For now
we will restrict ourselves to the longitudinal component of
the self energy ΠL ≡ Π00. Performing the trace over the
γ-matrices and using (5) gives,

ΠL
R(P ) = −2ie2

∫
d4K

(2π)4
(q0k0 + q · k)

×
[
∆̃F (Q)∆̃R(K) + ∆̃A(Q)∆̃F (K)

+∆̃A(Q)∆̃A(K) + ∆̃R(Q)∆̃R(K)
]
. (14)

Terms proportional to (∆̃F (Q))2 that contain products of
δ-functions, which might cause pinch singularities [5], do
not appear. This cancellation is well established in equi-
librium calculations. A great advantage of the Keldysh
representation is that the cancellation is immediately ev-
ident, before any momentum integrals are done.

To proceed further we do the integral using bare elec-
tron propagators and taking the HTL approximation. This
approximation is based on the assumption that we can dis-
tinguish between soft momenta of the order eT and hard
ones of the order T , which is possible in the weak coupling
limit e � 1. We assume that the external momentum P
is soft (because it is only for soft momenta that the HTL
self energies have to be resummed), and that the internal

momentum K is hard1. The resulting integral can be done
analytically and gives the final result:

ΠL
R(P ) = −3m2

γ

(
1 − p0

2p
ln

p0 + p + iε

p0 − p + iε

)
, (15)

where mγ = eT/3 is the effective photon mass. This result
agrees with the result in the ITF [1,2] (found earlier by
Weldon and Klimov using the high temperature approx-
imation [11], which is equivalent to the HTL limit [2]).
Analogously one obtains for the advanced photon self en-
ergy

ΠL
A(P ) = ΠL

11(P ) + ΠL
21(P )

= −3m2
γ

(
1 − p0

2p
ln

p0 + p − iε

p0 − p − iε

)
. (16)

The transverse part of the HTL photon self energy, ΠT (P )
= (δij − pipj/p2)Πij(P )/2, is computed in a similar way
yielding

ΠT
R,A(P ) =

3
2

m2
γ

p2
0

p2

[
1 −

(
1 − p2

p2
0

)
p0

2p
ln

p0 + p ± iε

p0 − p ± iε

]
.

(17)
Next we calculate ΠL

F = −ΠL
12 − ΠL

21 (see (6) and
(7)) within the HTL approximation. As we will show in
Sect. 4, this quantity is necessary to obtain the resummed
propagator out of equilibrium. Using (5) we obtain

ΠL
F (P ) = −2ie2

∫
d4k

(2π)4
(q0k0 + q · k)

×
{

∆̃F (Q)∆̃F (K) −
[
∆̃R(Q) − ∆̃A(Q)

]

×
[
∆̃R(K) − ∆̃A(K)

]}
. (18)

Extracting ∆̃F from (9), using ∆̃R(Q) − ∆̃A(Q) =
−2πi sgn(q0) δ(Q2), and taking the HTL approximation
we obtain,

ΠL
F (P ) = −4ie2

πp
θ(p2 − p2

0)
∫ ∞

0
dk k2 nF (k) [1 − nF (k)]

= −6πi m2
γ

T

p
θ(p2 − p2

0). (19)

The transverse part is given analogously by

ΠT
F (P ) = −3πi m2

γ

T

p

(
1 − p2

0

p2

)
θ(p2 − p2

0). (20)

Note that the HTL expression for ΠF is of higher order in
the coupling constant than ΠR,A for soft momenta p ∼ eT .
This observation also follows directly from (11) for soft k0.
It is easy to show that these HTL results satisfy (11) for
soft p0.

1 In the ITF, i.e. in euclidean space, this assumption cor-
responds to |p0|, p � k [2]. In the RTF (Minkowski space)
however, the requirement |P | � k is sufficient since the exact
one-loop self energies coincide with the HTL ones on the light
cone P 2 = 0 [10]
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P

Fig. 2. Effective photon propagator

3.2 Resummed photon propagator

The second step of the Braaten-Pisarski method is the
construction of the effective Green functions to be used in
the effective perturbation theory. The resummed photon
propagator, for instance, describing the propagation of a
collective plasma mode, is given by the Dyson-Schwinger
equation of Fig. 2, where we adopt the HTL result for the
photon self energy. The equation reads in Coulomb gauge
(D00 ≡ DL)

D∗L = DL + DLΠLD∗L, (21)

where the propagators and self energy are 2 × 2 matrices
and ∗ indicates a resummed propagator and not a complex
conjugation. Throughout this paper we use the Coulomb
gauge, which is convenient for later applications [2]. Since
the final results for physical quantities are gauge indepen-
dent using the HTL resummation method, we may choose
any gauge.

Using the identities (3) for the bare and resummed
propagators, (6) for the self energies, and the definitions
(4) for the advanced and retarded propagators DA,R and
D∗

A,R it is easy to show that

D∗L
R,A = DL

R,A + DL
R,AΠL

R,AD∗L
R,A. (22)

From this expression we find for the effective longitudinal
retarded and advanced photon propagators

D∗L
R,A(P ) =

[
p2 + 3m2

γ

(
1 − p0

2p
ln

p0 + p ± iε

p0 − p ± iε

)]−1

.

(23)
From (10) we obtain,

D∗L
F (P ) = [1 + 2nB(p0)] sgn(p0)

×
[
D∗L

R(P ) − D∗L
A(P )

]
. (24)

Introducing the spectral function [12]

ρL(P ) ≡ − 1
π

ImD∗L
R(P ) (25)

the propagator (24) can be written as

D∗L
F (P ) = −2πi [1 + 2nB(p0)] sgn(p0) ρL(P ). (26)

Compared to the bare propagator we simply have to re-
place the bare spectral function sgn(p0)δ(P 2) in (8) by the
spectral function for the effective propagator.

Q

P P’
Fig. 3. Electron self energy defining the damping rate of a
hard electron

For the effective transverse photon propagator in
Coulomb gauge we obtain analogously

D∗T
R,A(P ) =

{
p2
0 − p2 − 3

2
m2

γ

p2
0

p2

[
1 −

(
1 − p2

p2
0

)

× ln
p0 + p ± iε

p0 − p ± iε

]}−1

(27)

and

D∗T
F (P ) = −2πi [1 + 2nB(p0)] sgn(p0) ρT (P ) (28)

with the transverse spectral function ρT ≡ − 1
π Im D∗T

R.

3.3 Interaction rate of a hard electron

The last step of the Braaten-Pisarski method is the use
of the effective Green functions for calculating observables
of hot gauge theories in the weak coupling limit e � 1.
Famous and often discussed examples are damping or in-
teraction rates of particles in hot relativistic plasmas (for
references see [2]). In this section we discuss the interac-
tion rate of a hard electron (p ∼ T � eT ) in a QED
plasma with zero chemical potential.

The interaction rate of a massless fermion is defined
by

Γeq(p) = − 1
2p

[1 − nF (p)] tr [P/ Im ΣR(p0 = p,p)]. (29)

The electron self energy Σ is shown in Fig. 3. The imagi-
nary part of the diagram corresponds to the elastic scat-
tering of the hard electron off thermal electrons in the
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QED plasma via the exchange of a collective plasma mode.
Since p � eT we do not need effective vertices. Also, the
diagram containing an effective electron propagator and a
bare photon propagator, corresponding to Compton scat-
tering, can be neglected (it leads to a higher order contri-
bution since the electron propagator is less singular than
the photon propagator). The integral over the photon mo-
mentum Q is dominated by small photon momenta (the
Rutherford singularity). The leading order contribution
to the interaction rate is obtained by integrating over the
entire momentum range of the exchanged photon using a
resummed propagator. The result is of order e2T which
is greater by a factor of 1/e2 than the result one would
expect from the natural two loop scale. This anomalously
large rate occurs because of the presence of the thermal
photon mass in the denominator of the effective photon
propagator, and the fact that the integral is dominated
by small photon momenta.

Using the Keldysh formalism and taking the hard ther-
mal loop limit we find,

Γeq(p) =
e2T

2π
[1 − nF (p)]

∫ ∞

0
dq q

∫ q

−q

dq0

q0

×
[
ρL(Q) +

(
1 − q2

0

q2

)
ρT (Q)

]
, (30)

in agreement with the result found in the ITF [13]. Using
the static approximation q0 � q for the spectral functions
which is accurate to about 10% [2] we end up with

Γeq(p) ' e2T

2π
[1 − nF (p)] ln

const

e
, (31)

where the const under the logarithm, which comes from
a singularity in the transverse photon propagator, cannot
be determined within the Braaten-Pisarski resummation
scheme [14]. Assuming an infrared cutoff of the order e2T ,
which could be provided by the interaction rate itself [14],
our result (31) is correct to order e2 ln e. In order to de-
termine the order e2 correction one has to go beyond the
HTL resummation scheme, which lies out of the scope of
the present investigation.

4 Non-equilibrium

So far there are only a few investigations using HTL re-
summed Green functions out of equilibrium. Baier et al.
[15] have studied the photon production rate in chemical
non-equilibrium and Le Bellac and Mabilat have investi-
gated off-equilibrium reaction rates of heavy fermions in
the appendix of [16]. In this section we want to consider a
non-equilibrium situation within the Keldysh representa-
tion by following the steps outlined in Sect. 3. At this point
we distinguish between two separate aspects of the non-
equilibrium problem. The study of how a system that is
initially out of equilibrium will relax towards equilibrium
is beyond the scope of this work. We restrict ourselves
to the study of microscopic processes which take place
in an out of equilibrium background, under the implicit

assumption that the time scale of this microscopic pro-
cess is much smaller than the time scale of the relaxation
of the background towards equilibrium. This assumption
is consistent with the HTL expansion. HTL propagators
and vertices, with quasistationary distribution functions,
describe the physics of modes with momenta of the order
e times the hard momentum scale or larger. The damping
rates which determine the relaxation time of the system
are of order e2 times the hard momentum scale. Equili-
bration is therefore slow, at least close to equilibrium. In
a relativistic heavy ion collision for example, we expect
a fast thermalization [4] which could not be described by
our method, and a much slower chemical equilibration [3]
where our approach should be valid [15].

Out of equilibrium, difficulties arise because of the fact
that (10) and (11) do not hold for resummed propagators.
In equilibrium these relations lead to the a priori cancella-
tion of the pinch singularities associated with the product
of an advanced and retarded propagator carrying the same
momentum. Out of equilibrium, where these relations do
not hold, the situation is more involved and the cancella-
tion of pinch singularities is not automatic. We will discuss
this problem in the remainder of this section.

The derivation of the retarded and advanced HTL pho-
ton self energies are completely analogous to the equilib-
rium case, because the bare electron propagator has the
same structure as in equilibrium. Note that the HTL ap-
proximation |p0|, p � k does not require the assumption
of the existence of a temperature. We obtain the same
results for the advanced and retarded HTL self energies,
(15), (16) and (17), with the equilibrium thermal photon
mass

m2
γ =

4e2

3π2

∫ ∞

0
dk k nF (k) =

e2T 2

9
(32)

replaced by the expression

m̃2
γ =

4e2

3π2

∫ ∞

0
dk k fF (k). (33)

We note that there are no pinch singularities in the ad-
vanced and retarded HTL self energies.

Since the Dyson-Schwinger equation (21) for the ad-
vanced and retarded propagators is identical in equilib-
rium and non-equilibrium, the resummed advanced and
retarded propagators are given again by (23) and (27),
using m̃γ for the thermal photon mass. We obtain the re-
summed symmetric propagator D∗L

F = D∗L
11 + D∗L

22 from
the Dyson-Schwinger equation

D∗L
11 + D∗L

22 = DL
11 +

2∑
i,j=1

DL
1iΠ

L
ijD

∗L
j1 + DL

22

+
2∑

i,j=1

DL
2iΠ

L
ijD

∗L
j2. (34)

Using (5) for the bare and full propagators and (6) and
(7) for the self energies we have,

D∗L
F = DL

F + DL
RΠL

RD∗L
F + DL

F ΠL
AD∗L

A

+DL
RΠL

F D∗L
A. (35)
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It is easy to show that this equation is solved by the fol-
lowing propagator:

D∗L
F (P ) = [1 + 2fB(p0)] sgn(p0)

[
D∗L

R(P ) − D∗L
A(P )

]

+
{
ΠL

F (P ) − [1 + 2fB(p0)] sgn(p0) (36)

× [
ΠL

R(P ) − ΠL
A(P )

]}
D∗L

R(P ) D∗L
A(P ).

In equilibrium the second term, which might lead to pinch
singularities (because it contains the product of an ad-
vanced and a retarded propagator [5]), vanishes due to
(11). Equation (24) is recovered.

Out of equilibrium (11) does not hold, and the second
term in (36) does not automatically give zero. We now
consider this situation. A product of bare propagators in
this expression would contain the product of delta func-
tions which is called a pinch singularity:

DL
R(P )DL

A(P ) =
1

P 2 + isgn(p0)ε
1

P 2 − isgn(p0)ε
→ [δ(P 2)]2. (37)

Consider, however, what happens when we use resummed
propagators in (36). In this case we have,

D∗L
R(P ) − D∗L

A(P ) ≡ −2πiρ̃L(P ),

D∗L
R(P )D∗L

A(P ) = −π
ρ̃L(P )

Im ΠL
R(P )

, (38)

where the non-equilibrium spectral function ρ̃L defined
in (38) differs from the equilibrium one (25) only by the
thermal mass (33). To calculate ΠL

F we note that (15) and
(19) hold also out of equilibrium if we use m̃2

γ in (15) and
replace nF by fF in (19). Then we can write ΠL

F as

ΠL
F (P ) = 2iA

Im ΠL
R(P )

p0
, (39)

where the constant A is given by

A =

∫ ∞
0 dk k2 fF (k) [1 − fF (k)]∫ ∞

0 dk k fF (k)
. (40)

Inserting (38) and (39) into (36) and using

ΠL
R(P ) − ΠL

A(P ) = 2iIm ΠL
R(P ) (41)

we obtain
D∗L

F (P ) = −2πi
A

p0
ρ̃L(P ). (42)

In spite of (38) this result holds also for a vanishing
imaginary part of the self energy, because ImΠL

R drops
out of the second term of the propagator (36) according
to (38), (39), and (41).

In equilibrium A reduces to 2T . Consequently (42)
agrees with (26) in the equilibrium case in the soft p0
(HTL) limit. For the transverse propagator we simply have
to replace ρ̃L by ρ̃T in (42).

Fig. 4. Electron self energy containing a pinch singularity

Fig. 5. Photon self energy Π̄

The conclusion is the following. When (36) is rewritten
in the form (42) it is clear that the apparent pinch singu-
larity in the QED HTL effective photon propagator does
not in fact occur. Physically we have found that this sin-
gularity is regulated by the use of the resummed propaga-
tors. This result agrees with that obtained by Altherr [18]
who found that finite results could be obtained in a scalar
field theory by resumming pinch terms. Since the scalar
self energy has no imaginary part at one loop, a finite
width was inserted by hand to provide the regularization.
The same result was also found by Baier et al. [15] for the
fermion propagator in a chemically non-equilibrated QCD
plasma, in the HTL limit.

We now discuss higher order calculations. To begin
we consider the ‘Altherr type’ diagram in the case of the
electron self energy shown in Fig. 4. When this diagram
is calculated with bare lines, a pinch singularity appears
to occur because of the product of the two propagators
with the same momentum dependence. However, resum-
ming diagrams with all possible numbers of self energy
insertions yields a finite result since this sum of diagrams
is equivalent to calculating the one loop diagram with the
HTL effective propagator (in the case of soft external mo-
menta), which we have shown does not contain a pinch
singularity. To next order we consider the same Altherr
type diagram in Fig. 4 where internal lines are HTL effec-
tive propagators, and the self energy insertion (Π̄) are the
one loop diagrams with HTL effective propagators on the
internal lines and HTL effective vertices shown in Fig. 5.
At first glance it appears that above the light cone, where
the imaginary part of the HTL self energy is zero, this di-
agram will have a pinch singularity that arises in the same
way as for the diagram with bare propagators. Consider,
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however, what happens when we resum diagrams with all
possible numbers of self energy insertions Π̄. This proce-
dure is equivalent to calculating the one loop diagram with
an effective propagator D∗∗ that is given by the Dyson-
Schwinger equation,

D∗∗L
F (Q) =

A

q0

[
D∗∗L

R(Q) − D∗∗L
A(Q)

]

+
{

Π̄L
F (Q) − A

q0

[
Π̄L

R(Q) − Π̄L
A(Q)

]}

×D∗∗L
R(Q) D∗∗L

A(Q). (43)

The product of propagators D∗∗
R D∗∗

A can be rewritten as
proportional to a spectral function divided by the imag-
inary part of Π̄R in exactly the same way as before (see
(38)). Thus, the regulation of the singularity will occur
as before, if we can write the symmetric self energy Π̄F

as proportional to the imaginary part of the retarded self
energy, as in (39). So far, this result has only been proven
for the HTL self-energy. If it is true in general, then the
mechanism outlined above for the HTL effective propaga-
tor will work at all orders, and all physical quantities will
be free of pinch singularities, as expected.

It should be noted that the self energy Π̄ contains
an imaginary part (damping) also above the light cone.
Hence the effective propagator D∗∗ has a finite width and
will regulate all pinch singularities according to Altherr
[18].

Quantities that are logarithmically infrared divergent
using bare propagators such as the photon production rate
in a QGP can be calculated consistently to leading order
by a decomposition into a soft and a hard part [19]. For
this purpose a separation scale eT � q∗ � T for the mo-
mentum Q of the exchanged particle is introduced. The
hard part then follows from a two-loop self energy contain-
ing only bare propagators analogously to Fig. 4. However,
due to the kinematical restriction −Q2 > q∗2 no pinch sin-
gularity [δ(Q2)]2 (see (37)) occurs [15]. Hence there are no
pinch singularities using the HTL resummation technique
to leading order. At higher orders a resummation beyond
the HTL scheme leading to (43) might be necessary.

Lastly, we investigate the non-equilibrium electron
damping rate. The equilibrium result (30) is modified to
become,

Γneq(p) =
e2

4π
[1 − fF (p)]

∫ ∞

0
dq q

∫ q

−q

dq0
A

q0

×
[
ρ̃L(Q) +

(
1 − q2

0

q2

)
ρ̃T (Q)

]
, (44)

leading to the final result

Γneq(p) ' e2A

4π
[1 − fF (p)] ln

const

e
. (45)

The deviation of the spectral function from the equilib-
rium one does not matter here because the thermal photon
mass drops out after integrating over q [2]. Comparison
with the equilibrium case (31) gives

Γneq(p) =
A

2T

1 − fF (p)
1 − nF (p)

Γeq. (46)

Finally, we discuss the specific case of a chemically
non-equilibrated QED plasma. Numerical transport sim-
ulations of the QGP in relativistic heavy ion collisions
show that there is rapid thermalization in a partonic fire-
ball. However, chemical equilibration takes much longer,
if it is achieved at all during the lifetime of the QGP [3,4].
In order to describe this deviation from chemical equilib-
rium, phase space suppression factors λB,F depending on
time – sometimes also called fugacities – are introduced
[3]. Assuming that the photons, electrons and positrons in
a QED plasma are not in chemical equilibrium, the distri-
butions are given by

fB(p0) = λB nB(p0), fF (p0) = λF nF (p0), (47)

where 0 < λB,F < 1 indicates undersaturation and λB,F

> 1 oversaturation of the corresponding photons and
fermions compared to an equilibrated QED plasma. Us-
ing the distributions (47) we find for the constant A in
(40) after numerical integration A = 2T +0.192T (1−λF ).
Substitution in (46) gives

Γneq(p) =
1 − λF nF (p)

1 − nF (p)
[1 + 0.096(1 − λF )]Γeq(p). (48)

The non-equilibrium rate is independent of the pho-
ton fugacity λB and depends only weakly on λF . This
observation is the result of a cancellation of two efects: in
an undersaturated (oversaturated) plasma the number of
scattering partners is reduced (enhanced) and, at the same
time, the Debye mass m3

D = 3m3
γ is reduced (enhanced)

leading to less (more) screening. To a large extent, these
two effects cancel each other and lead to a rate that is
approximately independent of the fugacities. As a matter
of fact, the non-equilibrium rate increases in an under-
saturated plasma a little bit, because there is less Pauli
blocking in this case. In equilibrium the cancellation be-
tween the number of scattering partners (flavors) and the
Debye screening is exact [20].

5 Conclusions

In the present paper we have studied explicitly the HTL
resummation technique in equilibrium and non-equilib-
rium within the RTF using the Keldysh representation.
We have considered the HTL photon self energy, the re-
summed photon propagator, and the interaction rate of
a hard electron in a QED plasma. We have pointed out
the convenience of the Keldysh representation, where only
the symmetric propagators GF depend on the distribution
functions and where possible pinch terms cancel automat-
ically in equilibrium.

We have shown that the HTL resummation technique
can be extended to non-equilibrium situations assuming
quasistationary distributions. This assumption does not
allow us to study the equilibration of the system; it re-
stricts us to the study of microscopic processes taking
place in an out of equilibrium background under the as-
sumption that the time scale of this microscopic process is
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much smaller than the time scale of the relaxation of the
background towards equilibrium. This assumption is con-
sistent with the HTL expansion. HTL propagators and
vertices describe the physics of modes with momenta of
the order of e times the hard momentum scale or larger.
The damping rates which determine the relaxation time of
the system are of order e2 times the hard momentum scale.
Equilibration is therefore slow, at least close to equilib-
rium, and quasistationary distributions can be assumed.
In relativistic heavy ion collisions, for example, we expect
a fast thermalization [4], which could not be described by
our method, and a much slower chemical equilibration [3]
where our approach should be applicable [15].

The retarded and advanced HTL photon self ener-
gies in non-equilibrium are obtained from the equilibrium
quantity by replacing the thermal mass of the photon
by a non-equilibrium expression (33). The retarded and
advanced resummed photon propagators have the same
structure as their equilibrium counterparts. However, the
resummed symmetric photon propagator D∗L,T

F (36) con-
tains an additional term (pinch term) compared to the
equilibrium expression (24). This singularity is regulated
by the resummed propagators in the pinch term in (36).
One obtains an expression (42) for the HTL effective prop-
agator that has the same structure as the equilibrium re-
sult (26). Therefore, there are no additional pinch singu-
larities in HTL effective propagator in the non-equilibrium
formalism, compared with the equilibrium situation. We
have discussed how to extend these results beyond leading
order by an additional resummation beyond the HTL one.

Higher n-point functions could also be calculated effi-
ciently using the Keldysh representation [9,21]. We expect
that the absence of pinch singularities persists. Since the
HTL self energies are gauge invariant out of equilibrium
(since they differ from the equilibrium HTL’s only by the
definition of the thermal masses), we expect that Ward
identities will hold out of equilibrium [22], and thus the
structure of all HTL Green functions should be the same
both in and out of equilibrium.

As an example we have discussed the interaction rate
of a hard electron and showed that the result has the
same form out of equilibrium as in equilibrium. (We note
that this discussion of pinch singularities has no bearing
on the infrared divergence that occurs in the HTL cal-
culation of this quantity). We have considered a chemi-
cal non-equilibrium situation by multiplying the equilib-
rium distribution functions by a fugacity factor. The non-
equilibrium interaction rate is approximately independent
of the fugacities.

Using the formalism developed in this paper, it will be
straightforward to calculate observables in a non-equilib-
rium parton gas. Examples that have already been con-
sidered in an equilibrated QGP include parton damping
and transport rates, the energy loss of partons, transport
coefficients, and production rates of partons, leptons, and
photons.
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